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ABSTRACT
Graph-based learning methods have a variety of names in-
cluding semi-supervised and transductive learning. They
typically use a diffusion to propagate labels from a small
set of nodes with known class labels to the remaining nodes
of the graph. While popular, these algorithms, when imple-
mented in a straightforward fashion, are extremely sensitive
to the details of the graph construction. Here, we provide
four procedures to help make them more robust: recognizing
implicit regularization in the diffusion, using a scalable push
method to evaluate the diffusion, using rank-based rounding,
and densifying the graph through a matrix polynomial. We
study robustness with respect to the details of graph con-
structions, errors in node labeling, degree variability, and a
variety of other real-world heterogeneities, studying these
methods through a precise relationship with mincut prob-
lems. For instance, the densification strategy explicitly adds
new weighted edges to a sparse graph. We find that this
simple densification creates a graph where multiple diffusion
methods are robust to several types of errors. This is demon-
strated by a study with predicting product categories from
an Amazon co-purchasing network.

Categories and Subject Descriptors
G.2.2 [Discrete mathematics]: Graph theory—Graph al-
gorithms

1. INTRODUCTION
Graph-based data analysis and machine learning tools

are common, and they typically involve a two-step process:
first, construct in some way a graph from the data; and
second, run a graph data mining algorithm on that graph.
While most algorithmic and statistical research focuses on
the latter step, in most downstream applications the initial
construction step is the bottleneck to obtaining insight from
the data. In particular, an important, yet underappreciated,
aspect of this process is the effect of “noise” or “perturbations”
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or “arbitrary decisions” in the construction of the graph on
the output of the subsequent graph algorithm. For example,
data graphs are typically constructed by making plausible
but ultimately somewhat arbitrary design decisions, e.g.,
the exact form of the interaction kernel; the exact means
of sparsifying the graph; the limits of the computational
platform to handle graphs, matrices, and weights. It is
clearly of interest to understand how robust are the outputs
of graph mining algorithms to the details of these design or
data modeling decisions.

This paper links the impact of these two related activities:
the graph creation process (and implicitly the data fidelity),
and the statistical properties of algorithmic procedures run
on that graph. We provide a set of computational evidence
that suggests ways to make these processes robust to a variety
of issues with data creation, and we show results in improved
performance in downstream applications. Our codes are avail-
able to reproduce this research: https://www.cs.purdue.

edu/homes/dgleich/codes/robust-diffusions. We begin
by reviewing relevant results from these two areas.

1.1 Graph constructions
There are potentially many things that fall under this

general heading. Here are perhaps the three most common
and the three that most motivated this work.

Problems with edges/nonedges in explicit graphs. By
an explicit graph, we mean one that is given to the data ana-
lyst to work with, where the graph was constructed by some-
one else via a process that is, perhaps, not-fully-described.
A canonical example of this is with social networks, where
the graph structure is released but details regarding its con-
struction are not provided [21, 17, 28]. For instance, the
Facebook100 graphs [28] used an induced subgraph of nodes
from one day of logged in users. In this case, note that the
graph structure changes if this period changed to 2 or 30
days. These quantities are clearly well-defined properties of
the data at hand, but in some sense they and other somewhat
arbitrary cutoffs inject “noise” into the graph, relative to the
“real” processes generating the underlying original data.

Problems with edges/nonedges in constructed graphs.
By a constructed graph, we mean one that is constructed by
the data analyst from some other primary data. A canonical
example of this is a graph that is constructed from feature
vectors according to some nearest-neighbor (NN) rule, as is
common in machine learning [27, 24, 3, 7]. Here, one must
choose a distance function, whether one works with k-NN or
ε-NN, the values of k and ε, etc. Similarly, one may construct
the adjacency matrix by thresholding small values of a corre-
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lation matrix or similarity matrix to zero according to some
rule. These are best viewed as “model selection” decisions,
and the appropriate values of the parameters can be chosen
according to a plausible model selection rule. Nevertheless,
many of these design decisions are made for methodologi-
cal or computational convenience and not because they are
directly related to the processes generating the data. For
instance, many algorithms run more quickly on sparsified
networks with small k in k-NN constructions. Thus, they
may be viewed as injecting some sort of “noise” into the graph
construction process, again relative to the hypothesized “real”
processes generating the underlying original data.

Problems with labels associated with the nodes or
edges. In either of these cases, one is typically given some
sort of labels on some of the nodes and/or edges, and one
wants to use the graph structure to propagate that informa-
tion to predict labels for other nodes/edges. This could be
unsupervised, e.g., one might want to find a cluster, or it
could be supervised or semi-supervised, e.g., one might want
to rank nodes nearby a pre-specified node or one might want
to predict the value of labels on unlabeled nodes. In these
cases, it is plausible that if the graphs are very “nice” (in
some sense) then the clusterings, rankings, or predictions
will be robust to errors or noise in the labels, while otherwise
(e.g., if “noise” has implicitly been injected into the graph
generation step of the data analysis pipeline with one of the
mechanisms described above) then the clusterings, rankings,
or predictions might not be robust.

In each of these cases, it is of interest to understand how
sensitive subsequent analysis is to the details of these initial
data modeling decisions—in our experience, they are often
very sensitive—as well as to develop analysis methods for
large-scale data that provide robustness to these decisions.

1.2 Scalable graph algorithms, regularization,
and diffusion-based learning

A seemingly very different direction in graph data mining
is to develop algorithms that scale to extremely large graphs,
e.g., algorithms that don’t even have to look at the entire
graph but that still come with strong performance guaran-
tees. For example, recent work on local spectral methods has
shown that one can find provably-good clusters in very large
graphs without even looking at the entire graph [26, 1]. Most
relevant for this paper is the so-called “push procedure” of
Andersen, Chung, and Lang (ACL) [1], which was originally
introduced as an extremely scalable and strongly-local spec-
tral approximation algorithm for the personalized PageRank
problem. (It was invented in a variety of forms by [12, 20,
5].) The push procedure in particular has proven critical in
establishing very strong empirical results on the existence
and non-existence of clusters and communities of different
sizes in large social and information networks [18, 13].

Informally, what these local spectral methods do is start
with a seed set of nodes and run a few steps of a random walk.
If there is a good cluster near the seed set, then this manifests
itself as a bottleneck to mixing, the random walk is stopped,
and the set of nodes that has non-negligible mass is returned
as the cluster. Otherwise, the algorithm detects that there is
not a bottleneck and stops before it touches too many nodes.
An optimization formulation of these local spectral methods
(which may be interpreted as a normalized cut biased toward
the initial seed set, and which may be solved with a Laplacian-
based linear equation solver) has been provided by Mahoney,

Orecchia, and Vishnoi (MOV) [19].1 In addition, Mahoney
and Orecchia have shown that these random walk based
approximation algorithms implicitly but exactly optimize
regularized forms of semi-definite programming variants of
the usual Rayleigh quotient objective [23].

To use ACL and MOV as an example of how local spec-
tral methods help robustify graph-based learning algorithms
to details of the graph construction process, we apply and
extend a framework that was developed to understand the
implicit regularization properties in these scalable approx-
imation algorithms. The framework, that of algorithmic
anti-differentiation (which we introduced recently [10]) aims
to make precise the objective functions that approximation
algorithms and popular heuristics solve exactly. Among
other things, we [10] showed that—for appropriate parame-
ter settings—the MOV procedure solves a certain constrained
`2-regression problem exactly (which should not be very sur-
prising to readers familiar with spectral methods); and (much
more surprisingly) that the ACL push procedure (which, re-
call, was originally introduced as an extremely scalable and
strongly-local spectral approximation algorithm for the per-
sonalized PageRank problem) solves an `1-regularized version
of that `2-regression problem exactly. In each of these cases,
the algorithmic anti-differentiation method involves identify-
ing an implicitly-defined objective function that is optimized
and the construction of an implicitly-defined graph where
the algorithm runs. As we noted then, this framework is
more general and we now seek to apply it to diffusion-based
learning methods [14, 31, 32].

Perhaps the best known diffusion-based learning method
is semi-supervised learning on a graph. This involves taking
a graph (which is either the primary data, or more typically
which has been constructed from neighborhood or distance
information between data points), where some of the nodes
of which are labeled with various class labels [14, 31, 32],
and then inferring the label on the unknown nodes. This
approach has also been combined with manifold learning and
related methods [4], where the graph is first projected onto
an hypothesized manifold and then the points are predicted
in light of that projection.

1.3 Contributions
In this paper, we consider three popular diffusion-based

machine learning algorithms [31, 14, 32], which we call Zhou
et al., Joachims, and ZGL after their authors.

1. To understand their behavior, we place them into a com-
mon framework based on mincut construction. This makes a
series of implicit regularization properties explicit, following
the ideas of algorithmic anti-differentiation we recently pro-
posed. For instance, the diffusion behavior in [31] provides
some regularization behavior for the graph edges. In contrast
with most previous work, we consider noisy and problematic
graphs for these methods to illustrate how they differ in the
presence of noise, erroneous edges, mistaken labels.

2. We show that we can use the highly scalable PageRank
push algorithm simultaneously to accelerate Zhou et al.’s
diffusion to provide another type of implicit regularization.

1Importantly, while ACL is strongly local, in that it finds a
locally-biased solution without even touching most of the nodes
of the original graph, MOV is weakly local, in that it finds a
locally-biased solution, but it does so by running an algorithm
that touches all of the nodes of the graph.
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3. The relationship with the mincut construction provides a
new type of label rounding rule based on ranks.

4. Our experiments identify a key weakness of these diffusion
methods: they cannot use many straightforward construc-
tions that provide additional edges. Put more plainly, their
performance is worse when the graph becomes dense. We pro-
pose a particular type of densification procedure to generate
useful additional edges. These additional edges improve the
classification performance in both the classic digits dataset
as well as a product-category prediction task on the Amazon
co-purchasing network.

1.4 Related work
There is a large body of existing work on diffusion-based

and eigenvector-based machine learning methods, some of
which we have already surveyed in our introduction. Our
work is very related to both Laplacian Eigenmaps [3], which
embeds the data on the eigenvectors of a Laplacian matrix, as
well as to the related Diffusion Maps, which refines Laplacian
Eigenmaps construction by considering more sophisticated
diffusions [7]. These methods are typically of greatest interest
when the data are not too noisy and when there exists some
sort of “nice” underlying structure to be found—e.g., if there
is a clear separation between eigenvalues of the Laplacian or
when the data are drawn from an underlying manifold. In
what follows, we have examined graphs which are not “nice”
in these senses. We study a synthetic example to identify a
series of effects that predict behavior on real-world datasets.

Some of the most related work has similar goals. The im-
portance of the graph construction process on semi-supervised
learning is already recognized [8]. There are a variety of tech-
niques in the literature to improve edge weighting to make
the diffusions perform better [25], or to choose parameters of
the methods in automated ways [30]. These nicely comple-
ment our new results on graph densification, rank rounding,
and implicit regularization of the methods.

2. SEMI-SUPERVISED LEARNING VIA
DIFFUSIONS AND CUTS

Consider a graph G on n nodes, in which a subset of nodes
are labeled with K classes. The goal is to predict the class
label of all the unlabeled nodes. Let S be the labeled sample
matrix, where Si,j = 1 if node i has class label j, and Si,j = 0
otherwise. This is an n×K matrix. Our results apply in the
case when graph G is undirected, connected, and weighted
(although they also extend with some technicalities to the
case of disconnected graphs). The algorithms we study here
use a graph diffusion—the precise diffusion is given in the
following sections—to produce an n×K matrix Y. Elements
of Yi,j should be large if node i should be labeled as class j.
This particular setup has the intuitive flavor of diffusing large
values from the labeled nodes to the unlabeled nodes. These
diffusions are the first key ingredient of the methods. Most of
our discussion and results below will focus on aspects of this
first ingredient. The second key ingredient, which we will
also discuss briefly, is the scheme to translate the diffusion
values Y into a predicted label. Based on the approximation
algorithms literature, we call this second step the rounding
step. Hence, the overarching framework for diffusion-based
semi-supervised learning is diffuse and round.

We should note that the basic ideas of this framework,
based on mincuts, are likely unsurprising to experts on semi-

supervised learning on graphs. Indeed, elements of our deriva-
tions appear in the literature [14, 32], and the connection was
mentioned in passing as a remark in our previous work [10].
But the details matter for the noisy situations we consider,
and academic data analysts are often cavalier about such
details. Thus, we describe the connections between the
diffusion-based methods and s, t-min-cut problems precisely.

2.1 Technical background
Let A be the adjacency matrix for a graph G. The graphs

we consider are connected and undirected, but they may be
weighted, in which case the elements of A contain the weights.
Let e be the vector of all ones, and let d = Ae be the vector
of degrees—some call these weighted degrees, but we will not
make that distinction. The matrix D is the diagonal matrix
with the degrees d on the diagonal. Then L = D−A is the
Laplacian matrix of G. Let B be the unweighted edge-node
incidence matrix, and let C be the corresponding diagonal
matrix of weights associated with each edge. Thus, L =
BTCB. It is well-known that the Laplacian matrix has deep
connections to random walks, electrical flows, and minimum
cuts; and we are most interested in these latter connections.
Here, we will follow our prior work on algorithmic anti-
differentiation, in particular following the notation and setup
used previously [10], and we will frame our discussion in
terms of spectral graph theory and min-cut problems.

Recall that, in our setup, the s, t-minimum cut problem is:

minimize ‖Bx‖C,1 =
∑

(u,v)∈E

C(u,v)|xu − xv|

subject to xs = 1, xt = 0.

(1)

The `2-minorant of (1) is a key components of our framework:

minimize ‖Bx‖C,2 =

√ ∑
(u,v)∈E

C(u,v)|xu − xv|2

subject to xs = 1, xt = 0,

(2)

or, equivalently, of this problem:

minimize 1
2
‖Bx‖2C,2 = 1

2

∑
(u,v)∈E

C(u,v)|xu − xv|2 = 1
2
xTLx

subject to xs = 1, xt = 0.
(3)

Note that (3) is not a minorant of (1); although, due to the
equivalence between (2) and (3), we refer to it this way. Note
also that although (1) requires a min-cut/max-flow network
linear program solve, (3) requires only a linear solve with
a sub-matrix of L. (This sub-matrix is non-singular if the
graph remains connected with nodes s and t disconnected.)

Existing diffusion-based learning methods, e.g., those of [14,
31, 32], tend to focus on deriving the linear systems them-
selves. We prefer to explain these diffusions in terms of the
`2 cut minorants of cut problems. In the following sections,
we’ll describe an s, t minimum cut construction whose `2 mi-
norant is the diffusion-based learning method. See Figure 1
for reference throughout the following sections.

2.2 Zhou et al.’s diffusions and the Andersen-
Lang weighting variation

Zhou et al. [31] propose the diffusion equation:2

Y = (L + αD)−1S, (4)
2Actually, they use Y = (D − βA)−1S. If α = 1−β

β
, however,

this is equivalent to our statement, up to scaling by a constant.
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where α > 0 and L is the Laplacian of the original graph.
This is equivalent to the minorant of an s, t-cut problem

where the problem varies based on the class. To see this
connection, consider the prediction of one column of Y, say
yj . Let s = sj be the jth column of the labeled samples
matrix S for class j. Then the mincut graph for s is a
graph where node s connects to each sample labeled with
class j with weight α. Node t connects to all nodes in the
graph (except s) with the connection weight for node i being
α(di − si). If si = di, then the edge has weight 0, which is
equivalent to that edge not existing at all. (This construction
is illustrated in Figure 1(a).) If we then apply the `2-minorant
of the s, t-cut problem, we seek x or y such that:

minimize 1
2
‖Bx‖2C,2

subject to xs = 1, xt = 0
⇔

minimize 1
2

[
1
y
0

]T [ αeT s −αsT 0
−αs αD+L α(d−s)

0 −α(d−s)T αeT (d−s)

] [
1
y
0

]
,

(5)

where y is the portion of x defined only on the vertices of
the original graph. (Here, we have labeled s as node 1 and t
as node n+ 2, recall we added nodes s and t.) By expanding
the final equation, we find that y solves:

(αD + L)y = αs,

and this is exactly a rescaled column of Y. Note that if any
element of s > d, then we must scale the weights on the
graph so that s ≤ d.

We note in passing that there is a natural variant of this
diffusion where s connects to the labeled sample nodes with
weight αdi. Then there will be no edge from the labeled
samples to t because d− s will be zero for those nodes (see
Figure 1(b)). For graphs with large variations in degrees,
this will affect the diffusion in a significant way. We call
this Andersen-Lang weighting due to its relationship with
the FlowImprove construction [2]. This modification has the
secondary advantage that there is no need to worry about
scaling the graph as Ds ≤ d for any binary vector s.

2.3 Joachims’s and ZGL’s diffusions
Joachims [14] proposed a different type of diffusion. The

construction we describe is inspired by the ideas discussed
in that paper.3 Namely, find a vector y that satisfies the
following bicriteria: it minimizes yTLy, and it has values
near 1 for nodes labeled with class j and values near −1 for
nodes labeled with classes other than j.

Our framework can provide this type of bias if we connect
s to the nodes labeled with the current class and connect t to
the nodes labeled with other classes. One large difference is
that we predict values near 0 for nodes labeled with classes
other than j. (See Figure 1(c) below.) The two natural
choices for the weights of these edges are either 1, or the
degree of the node. We study the case of unit weights for
simplicity, but note that the construction seamlessly extends
to the degree-weighted cases.

3While we draw inspiration from Joachims’ construction, the
details actually differ markedly, as Joachims includes many addi-
tional features that, no doubt, improve its practical performance
considerably.

The diffusion that results from taking the `2 minorant of
Joachims’ s, t-cut construction is:4

Y = (DS + L)−1S,

where DS is a diagonal matrix with the row-sums of S on the
diagonal. Because most rows in S are completely 0 (these are
the unlabeled nodes), and the remainder only have a single
1, the matrix DS is really a diagonal indicator matrix over
the labeled nodes.

Finally, Zhu, Ghahramani, and Lafferty [32] proposed an-
other type of diffusion, henceforth called the ZGL diffusion,
that is similar to that of Joachims, except that it strictly en-
forces the labeling on the labeled samples. For the predictions
on the jth class, ZGL solves:

minimize 1
2
yTLy

subject to yi =


1 if node i labeled in class j

0 if node i labeled in another class

free otherwise.

(6)
This diffusion is an `2 minorant of the s, t-cut problem where s
connects to all nodes labeled with class j with infinite weight.
So, in particular, they will never be cut. (See Figure 1(d)
below.) Thus, yi = 1 for all nodes labeled j. Likewise, all
nodes labeled with another class connect to t with infinite
weight, so that yi = 0 for those nodes.

3. ROBUSTIFYING VANILLA
DIFFUSION-BASED METHODS

We use the term “vanilla diffusion-based method” for a ma-
chine learning process that involves the basic semi-supervised
strategy of performing a diffusion to obtain a vector and then
using the numerical values (i.e., not the ranks) of the en-
tries of that vector to obtain class labels. In practice, these
methods are enhanced with a host of corrections and mod-
ifications to improve their performance, such as class-size
normalization. We wish to focus on the vanilla diffuse and
round procedure to propose principled, simple changes that
improve its robustness to data errors. That is, we hope
to enhance the vanilla algorithms with features that serves
multiple purposes, and these modifications should make it
easier to use diffusion-based learning methods in data anal-
ysis pipelines where humans cannot intervene with small
corrective fixes.

In the previous section, we showed that several popu-
lar diffusion-based propagation methods can be expressed
as the solution to Laplacian-based linear equations on an
implicitly-defined cut graph. In this section, we will relate
these diffusion procedures to a variety of standard regular-
ization and robustification procedures to help us understand
their behavior on real-world data (that we describe in the
next section). Specifically, we will show that Zhou et al.’s dif-
fusion implicitly localizes and regularizes the solution of the
diffusion in a small region of the graph through a relationship
with the MOV locally biased analogue of the Fiedler vec-
tor [19]. This helps to make it robust to errors in the graph.
We can also add a 1-norm, or sparsity inducing, penalty
to all of the diffusion equations to render them robust to
errors in the labels. When we add this penalty to Zhou’s

4We omit the derivation of this minorant due to its similarity with
the existing derivations.
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Figure 1: The s, t-cut graphs associated with four different constructions for semi-supervised learning on
a graph. The labeled nodes are indicated by the blue and red colors. This construction is to predict the
blue-class. Both Zhou et al. and the Andersen-Lang variation only model the effect of the current class.

diffusion, we arrive at a formulation that is equivalent to a
personalized PageRank problem. The Andersen-Chung-Lang
push procedure is an optimized routine to efficiently estimate
such diffusions. Finally, we detail a simple change to the
rounding procedure that renders the methods more robust
to class imbalances and is firmly rooted in the theory of `2
cut relaxations.

Note that all of the regularization we discuss is implicit
in the sense that it arises as a byproduct of the model and
algorithm and not by explicitly adding it as an extra regu-
larization term that is then solved by a black-box solver.

3.1 Implicit robustness in Zhou’s construction
Zhou’s diffusion construction results in solving:

Y = (αD + L)−1S

where S is the matrix of labels for each class and Y is the
predicted label. We now show that each column of Y is
equivalent to a weakly local MOV vector [19]. The MOV
vector was derived as a locally-biased variation on the Fiedler
vector of a graph and arose from a spectral relaxation of a
minimum conductance optimization problem. A MOV vector
r is the solution of the linear system:5

(L− γD)r = Dv

where v is a vector that such that vTd = 0. Now let yc
be the solution of Zhou’s diffusion for class c. This vector
satisfies the linear system: (αD+L)yc = sc. We can convert
this to a MOV problem as follows. Let v = D−1sc− 1

n
eT sce,

then vTd = 0. Let γ = −α. Set r to the MOV vector

(L− γD)r = Dv.

Then, r = yc+c for some correction vector c. The correction
vector c satisfies:

(L− γD)c = − eT sc
n

De,

which has a scaled constant vector as the solution: c = eT sc
nγ

e.
Notice that all we have done is shifted the solution r by a
constant amount in each component.
5In the MOV derivation, we considered varying γ over a regime
that included singular matrices, and hence, used a pseudo-inverse
solution. For this equivalence, the matrices are always non-singular
in the relevant γ regime.

The importance of this result is given by the properties
of the MOV vector. Using Zhou et al.’s diffusion results
in a process that is robust to errors in the graph because
the diffusion implicitly localizes around the labeled nodes
(which is what MOV was explicitly constructed to do for a
local Cheeger inequality). This prevents changes far away
in the graph from having a large influence on the diffused
labels. In contrast, both ZGL and Joachims’s diffusions are
more sensitive to the entire graph because the diffusion must
touch the other class labels. Moreover, the values for class s
depend on the location of the labels for the other classes.

3.2 Adding a regularizing sparsity penalty
Each of these diffusion-based learning problems corre-

sponds to a minimization problem with a modified Laplacian
matrix. One could regularize the underlying objective func-
tion, by adding a sparsity penalty, and then explicitly solve
the regularized problem to obtain a more robust solution. For
example, one could simply add on, say, a sparsity-inducing `1
regularization function and then call a black-box solver. But
this might be much more expensive than simply implementing
the original diffusion.

It turns out that one can solve certain regularized versions
of these original diffusion-based problems in a much more
scalable and robust way. To see this, consider (5), and
observe that if one uses a degree-weighted `1-norm penalty,
then one obtains the following objective:

minimize 1
2

[
1
y
0

]T [ αeT s −αsT 0
−αs αD+L α(d−s)

0 −α(d−s)T αeT (d−s)

] [
1
y
0

]
+ κ‖Dy‖1

subject to y ≥ 0.
(7)

As we pointed out in prior work, and importantly for our re-
sults below, for appropriate parameter settings, the Andersen-
Chung-Lang fast “push” method for computing approxi-
mations to personalized PageRank actually solves (7) ex-
actly [10]. For large values of parameter κ, systems of the
form of (7) can exactly be solved locally (i.e., by touching
a number of nodes that depends on the output and not
the number of nodes in the input graphs)—making this a
highly-scalable setup in practice. The push method for (7)
has been applied to graphs of size up to at least tens of
millions of nodes and billions of edges [18, 15], with runtimes
measured in seconds and milliseconds. In this paper, we
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do not address running time issues, since our main focus
is on robustness issues and using local spectral methods to
compute more robust solutions to diffusion-based machine
learning problems.

Thus, let us be clear. We do not explicitly regularize the
solution by solving (7). Rather, we simply call the push
method to compute an approximate PageRank vector. This
algorithm implicitly solves (7).

It is unclear if similar statements can be made for ap-
propriately regularized versions of the Joachims and ZGL
diffusion discussed in Section 2. The reason for this is that
in each step of the push procedure for Zhou et al.’s diffusion
there is a quantity that “leaks out” of the graph (this can
be formalized as a probability measure). For Joachims and
ZGL, this does not occur.

3.3 Rounding diffusion vectors to class labels
The result of the diffusion procedure is a real-valued num-

ber that indicates the propensity of node i to belong to class
j. The standard method to round these to labels is to use
the largest value among all classes [31], with many heuristic
variations [32]. Our results show that these diffusions are all
minorants of min-cut objective functions. The standard way
to turn a real-valued cut approximation into a hard cut is
to perform a sweep-cut procedure on the order of the nodes;
this is the basis of the celebrated Cheeger inequality [6]. The
theory of the spectral cut problems, then, suggests that the
rank of the node should be important. Thus, we propose
another technique to robustify diffusion methods: round
to classes based on the node with the smallest rank in the
ranked-list of each diffusion vector, i.e. each column of Y.

To see the advantage of this strategy, consider a graph
with the adjacency matrix that is shown in Figure 2(a).
Clearly, there are three fairly well separated classes with a
relatively few edges between them. The overall matrix has
60 nodes. Class 1 has 30 nodes, class 2 has 10 nodes, and
class 3 has 20 nodes. Thus, each prediction matrix Y has
three columns corresponding to each of the three classes. The
remaining subfigures show the matrix Y from the diffusion-
based learning methods we study: Zhou et al. (b, f); the
Andersen-Lang weighting variation (c, g); Joachims’s method
(d, h); and ZGL (d, i). The top panel in each of the remaining
subfigures shows the case of 3 labeled nodes (b, c, d, e), while
the bottom panel in each of the remaining subfigures shows
the case of 15 labeled nodes (f, g, h, i). In each figure,
note that each column of Y is displayed as a separate line,
color-coded according to one of the three class labels.

Let’s consider the top row with one labeled node from each
class, i.e., that corresponding to using 3 labeled nodes. The
spikes in each vector represent the effect of the labeled node
on each diffusion, while the values on the remaining nodes are
the value of the diffusion for that node. Note that only Zhou
et al.’s diffusion with three labels and value-based rounding
will correctly classify this simple example, agreeing with the
simple intuition. The Andersen-Lang variation suffers from
a degree-bias (in this simple case, it just weights Zhou et
al.’s diffusion with the degree of the labeled node). Both
Joachims and the ZGL diffusions misclassifies class 3 as class
1 because the near-clique like structure in class 1 dominates
the diffusion effects and the negative labels in class three are
not enough to recover. Thus, the negative labels have the
effect of changing the weight of each diffusion.

When we move to 15 labels, we label one node from each
class as before and the remaining 12 labels are chosen uni-
formly at random. None of the methods classify the examples
correctly and they all uniformly predict class 1, except for
ZGL which labels the pinned points correctly along with a
few nodes in classes 2 and 3. This occurs because there are
more nodes randomly selected from class 1, and it receives a
higher overall weight. We make two observations here. First,
there are a variety of very reasonable and well-motivated
heuristic corrections that would eliminate these effects and
restore the performance of value based rounding, and the
introduction of these heuristics is common. Second, the
rank-based rounding has good performance in all these cases,
regardless of the particular diffusion employed. To see this,
look at the ranking (essentially, fix a color, and move along
the Y axis from the top, and observe which nodes are “hit”)
on each color in the bottom panel of each of these subfigures.
All of the diffusion show raised levels for the correct class, and
these correct classes are revealed by the rank-based rounding
scheme, thus yielding far more robust predictions.

4. MAIN EMPIRICAL RESULTS
Our empirical results are on the following four themes:

1. There are broad similarities between the diffusions we have
discussed. We wished to study the differences among them
in a synthetic setting to get a more nuanced understanding
of their behavior. In particular, we focus on what happens
with the methods in low and high error rate scenarios in
sparse and dense graphs. These results indicate that Zhou
et al.’s diffusion is best in sparse networks (most real-world
networks are sparse).

2. Next, we use the classic semi-supervised diffusion-learning
task of digit prediction to investigate the impact of graph
construction on the final error rate. These results show: (i)
the impact of rank-based rounding on the error rate; and
(ii) indicate that simple constructions of two vastly different
types of dense graphs have higher error rates in the presence
of labeling mistakes. In these cases, the primary advantage
of using the push method is computational instead of for
robustness. It still provides a mild error rate benefit.

3. The results on the digits dataset indicate, counter in-
tuitively, that using additional nearest neighbors or kernel
information increases the error rate. We return to digits
and address the question of how best to use a given com-
putational budget of edges. Our experiment shows that a
densified sparse graph yields lower error rates than a denser
nearest neighbor graph.

4. We continue with a study of these densifying ideas in the
Amazon co-purchasing graph to illustrate how they arise in a
more realistic problem. In this problem, we see the that the
densified construction explored in the previous point greatly
improves performance of the diffusion-learning procedure.

4.1 A comparison of the diffusions
We generate a two-class problem with 150 nodes in each

class. The graph we construct is a block-model with between
class probabilities of 0.02. The within class probabilities is
0.35 in the dense case and 0.06 in the sparse case. We then fix
a number of nodes within each class and reveal their labels.
Each class has the same number of labels revealed. We then
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(a) The adjacency structure of our
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classes indicated.
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(f) Zhou et al., l = 15 (g) Andersen-Lang, l = 15 (h) Joachims, l = 15 (i) ZGL, l = 15

Figure 2: A study of the paradoxical effects of value-based rounding on diffusion-based learning in a simple
environment. With three labels, only Zhou et al.’s diffusion has correct predictions, whereas with 15 labels,
none of the methods correctly predict the three classes. See the text for more about the nature of the plots.

choose a small subset of additional nodes and reveal a random
label for those nodes. These random labels may be correct
or incorrect and we consider two where these errors occur
at a low rate and high rate. Each experiment is repeated
1000 times. The resulting mean of mistaken classifications
are shown in Figure 3. The methods should all work perfectly
in these cases if there were no label errors. We wanted to see
the differences when problems arise.

For the dense graph, the ZGL diffusion always has the best
performance. It makes exactly the same number of mistakes
as were given by the randomly labeled nodes. (Recall that
the ZGL diffusion fixes the provided class labels and hence
the number of mistakes it makes increase with the number of
labels.) As the number of labels increases, all of the methods
have similar performance. For the sparse graph, Zhou et al.’s
diffusion does substantially better with a low error rate and
also does better with a high error rate (but not too many
labels). These results are consistent with the cut derivations
and implicit regularization of the methods. Both ZGL and
Joachims’s diffusion have trouble with the sparse graph be-
cause there is no clear minimum cut between the classes
to find. Zhou et al.’s diffusion propagates independently
between classes and rank-based rounding enables it to find
more accurate information about the class structure.

4.2 A case study with the digits dataset
The problem setup we consider is the digit labeling task [31].

We construct a weighted graph between images of the digits
that depends on a radial basis function width σ. Choosing
σ = 2.5 results in a dense graph (although it is still sparse
by comparison with the study in Figure 3), where each node
has significant connections to many other images. Whereas
σ = 0.8 yields a much sparser graph with fewer significant
connections. We randomly pick labeled nodes in the input
after picking one labeled node in each class. We only describe
the results of Zhou et al.’s diffusion-based methods since our
preliminary study showed they had better performance than
the other methods. As in the prior work [31], we used
α = 0.01/0.99 ≈ 0.0101. When we use the push algorithm to

estimate Zhou’s diffusion, we implement a simple bisection
search procedure to find a value of κ that produces between
33-50% non-zeros in the final solution.

Values vs. Rank. Figure 4(a) and (b) illustrate the effect
of rank vs. value rounding for this task in the case that no
digits have any labeling errors. For value-based rounding,
the error rates without using the implicit regularization of
the push procedure are worse than random guessing and
the method basically predicts just one class. This is not a
bug and there is a simple illustration of this phenomenon
from Figure 2. Rank-based rounding shows that there is no
real difference between the regularized and non-regularized
diffusions. This shows how we are able to make the method
robust to differences in graph construction. In the case
σ ≈ 0.8, then value-based rounding is slightly better than
rank-based with many training samples (this is not shown
due to space). Hence, datasets can be engineered through
careful construction and cross validation to perform well
with value-based rounding, but one needs to be thoughtful
of a myriad of perplexing effects. Using rank-based rounding
avoid all of these issues.

Density and error rate. In the next experiment, we
consider two types of graph constructions derived from the
digit dataset. First, we continue to use the standard con-
struction and vary the kernel density width parameter σ.
Second, we can convert the weighted graph into a highly
sparse unweighted graph through a nearest neighbor con-
struction. That is, for each node in the weighted graph, we
form edges to its r-neighbors with the largest weights. Then
we discard the weights on the edges. (Note that the value of
σ is not relevant for the nearest neighbor graph as changing
σ results is a non-linear, monotonic change to the values
that retains the same nearest neighbors.) We use an error
label rate of 20% for these experiments, and all subsequent
experiments with the digits dataset. There is an average of
5 labels provided for each of the 10 classes, and at least one
correct label for each class.

365



20 40 60
0

20

40

60

80

100

number of labels

n
u

m
b
e

r 
o

f 
m

is
ta

k
e

s

5 10
0

50

100

150

number of labels
n
u
m

b
e
r 

o
f 
m

is
ta

k
e
s

(a) A dense graph, low
label error rate

(b) A sparse graph, low
label error rate
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Figure 3: Comparing the diffusions in a synthetic
case shows differences between sparse and dense
graphs with low and high error rates.

The results in Figure 5 show that increasing density, for
both notions, only decreases the performance of the diffusion-
learning algorithm. That is, we increase the error rate by in-
corporating additional information through the kernel width
or the nearest neighbors. This is counter intuitive from the
perspective that adding information should only increase
performance. The results are accurate and suggest that by
increasing the density of the graph, we are actually adding
additional errors. If this is indeed the case, then the slight
reduction in error rate that arises from using the Push proce-
dure to compute Zhou’s diffusion shows that it adds robust-
ness against these types of error—just as a regularization
method should.

4.3 Improving error rates with more edges
In the last experiment, we found that two straightforward

and common ways of increasing the density (and ideally, the
information) in a graph construction resulted in failure. This
caused us to ask, what is the best way to use additional edges
to improve performance? This question is important because
many real-world scenarios involve a fixed computational
budget of graph edges, dictated by storage and memory
limitations. The previous experiment suggest that there
is some limit where additional resources become harmful
instead of helpful. We now demonstrate an idea that will
allow us to use those additional edges to generate a denser
graph to improve performance.

The construction we employ to densify a graph is based
on neighbors at distance k. Given a graph with adjacency
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Figure 4: Results that show the difference between
value-based rounding (a) and rank-based rounding
on a dense graphs, large σ. We used 50 trials for the
and indicate the 20% and 80% percentiles with the
shaded region.
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Figure 5: Results on the performance of the diffu-
sions while varying the density through changing (a)
σ or (b) varying r in the nearest neighbor construc-
tion. In both cases, making the graph “denser” re-
sults in worse performance. We used an average of 5
labels per class and 25 trials for the and indicate the
20% and 80% percentiles with the shaded region.

matrix A, then the graph Ak is a weighted graph that counts
the number of paths of length up to k between pairs of nodes.
Formally, we can compute it through the summation:

Ak =

k∑
`=1

A`.

These matrices become dense quickly and we suggest using
small values of k. (Below we consider up to k = 4, and k = 3
for the real-world problem on Amazon).

In our current experiment, we wish to test the idea that
using Ak results in improved error rates for a fixed budget of
edges. To do so, we first compute a nearest neighbor graph
with a small number of neighbors, then compute Ak, and
subsequently look for another nearest neighbor graph with
about the same average degree. (The average degree of a
graph constructed with r-nearest neighbors is always at least
r. It is usually a little larger). Our paired sets of parameters
are given in Table 1, which span the range of 13 to 97 nearest
neighbors, for an average degree between 18 and 140.
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Neighs. Avg. Deg Neighs. k Avg. Deg

13 19.0 3 2 18.1
28 40.5 5 2 39.2
37 53.3 3 3 52.3
73 104.4 10 2 103.8
97 138.2 3 4 127.1

Table 1: Paired sets of parameters that give us the
same non-zeros in a nearest neighbor graph and a
densified nearest neighbor graph Ak.

Zhou Zhou w. Push

Avg. Deg k = 1 k ≥ 1 k = 1 k ≥ 1

19 0.163 0.114 0.156 0.117
41 0.156 0.132 0.158 0.113
53 0.183 0.142 0.179 0.136
104 0.193 0.145 0.178 0.144
138 0.216 0.102 0.204 0.101

Table 2: Median error rates over 25 trials show the
benefit to making a sparse graph into a dense graph
via the Ak construction. Note that using an average
degree of 138 outperforms all of the nearest neighbor
trials from Figure 5. See Table 1 for the number of
nearest neighbors and values of k.

The results in Table 2 show that we can achieve our goal
and decrease the error rate for Zhou’s diffusion using addi-
tional edges. More specifically, we find that using a small
number of nearest neighbors and a larger value of k results
in the best performance. Using r = 3 and k = 4 gives an
average degree of 138, and an error rate of around 0.1. This
error rate is better than any of the previous trials, and outside
the confidence intervals of the nearest neighbor trials.

4.4 A case study with Amazon
We wished to validate these densification findings in a

real-world setting. Consequently, we considered the problem
of predicting product categories on Amazon in the product
co-purchasing network [29]. The co-purchasing network is
extremely sparse with an average degree of three. It is also
a sparsified version of a hidden co-purchasing network kept
internally at Amazon, thus making a natural analogy with
our experiments on the digits dataset. One tricky aspect of
this problem is that the product categories overlap, and so we
studied the single-category prediction problem. To determine
the final set of labels, we used a sweep-cut procedure that
converts the diffusion information into a binary cut vector
by minimizing the conductance of the cut; we like to think
of this as returning to the original s, t-mincut constructions
as Zhou’s diffusion is highly related to a mincut strategy
to minimize conductance [2]. We selected categories based
on the strategy from [16], i.e., categories with nearly p

3/4
max

items where pmax is the number of products in the largest
category. We create dense versions of this graph in the same
way: Ak =

∑k
`=1 A`, where A is the adjacency matrix of

the co-purchasing network.
The F1 results of our predictions are shown in Table 3.

For k = 2 and k = 3, we see that the performance of Zhou’s
diffusion improves—just like in the digits dataset. The push
algorithm keeps the precision high, at the expense of recall.

mean F1 Confidence intervals

k Zhou Zhou
w. Push

Zhou Zhou w. Push

1 0.173 0.229 [0.15 0.19] [0.21 0.25]
2 0.197 0.231 [0.18 0.22] [0.21 0.25]
3 0.221 0.238 [0.17 0.27] [0.19 0.28]

Table 3: The F1 results of predicting product cate-
gories on an Amazon co-purchasing network based
on 20 labeled products with 2 errors show that when
the graph is densified (k=3), the result of Zhou’s
diffusion improve more than the results of the im-
plicitly regularized diffusion via push.

5. DISCUSSION AND CONCLUSION
We are optimistic that these schemes will enable graph-

based learning to be better behaved in realistic analytics
pipelines. Such pipelines are increasingly common in fields
such as bioinformatics, where massive quantities of highly
noisy data are mined for subtle insights about the behavior
and function of new biological processes. We wish to empha-
size that errors in labels hurt the diffusions in different ways,
as in the results of Figure 3. While it may seem strange in
academic machine learning to have errors on the given class
labels, it is common in many applications, e.g., biology. The
ground truth data are often inferred from a prior computa-
tional procedure that may itself be noisy. Understanding
these effects is important for future work.

We have presented this work in a simplified setting to eluci-
date our points easily. In terms of practical real-world usage,
we note that the modifications we propose are easy to incor-
porate into large scale graph computation frameworks such
as GraphLab or Ligra. In fact, the sparsity regularizer we
consider reduces the total work in the algorithm. There are
also a variety of ways to adapt these ideas to directed graphs,
such as using the directed Laplacian due to Fan Chung. Also,
having soft labels as the initial and final solutions are possible
because our ideas seamlessly handle a weighted set instead
of the discrete set just by using a weighted seed vector and
since our methods produce a continuous valued output that
must be rounded back to a label.

In terms of our result on densification, on sparse networks,
diffusions propagate too quickly with this value α and thus
any mistake propagates throughout the network. In this
case, the regularized solutions exert a correcting weak ef-
fect themselves by restricting the “diffusion flow.” If the
network is dense, then regularization doesn’t significantly
change the solution because if the signal propagates any-
where, it propagates everywhere (think of a diffusion in a
clique). We confirm this intuition in Figure 6 on the sparse
network representing co-authorship in the network science
community [22]. We create a dense version of this graph

via the same procedure Ak =
∑k
`=0 A`, for k = 5. The

figure shows that there is hardly any difference between the
regularized diffusions in either graph (compare (c) and (d)),
yet the diffusion on the dense graph (b) shows relatively
smaller values on the avoidable errors than the sparse graph
(a). Thus, using a dense graph construction has the effect
of naturally correcting mistakes, whereas these need to be
explicitly regularized away in sparse graphs.
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(a) Zhou on sparse (b) Zhou on dense (c) Zhou+Push on sparse (d) Zhou+Push on dense

Figure 6: We artificially densify this graph to Ak based to compare sparse and dense diffusions and regular-
ization. The color indicates the magnitude of the diffusion from the circled nodes. The unavoidable errors are
caused by a mislabeled node. This example illustrates how regularizing diffusions on dense graphs produces
only a small effect (b vs. d), whereas it has a big effect on sparse graphs (a vs. c). Also, the regularization is
more immune to density (c vs. d).

Technically, sparse graphs exhibit both localized eigenvec-
tors [11] and other localized rank structure [9]. When we
regularize in the sparse case, we explicitly regularize and bias
the results towards the localization in the eigenvectors [19,
11]. Using dense versions of the graph exhibits a regulariza-
tion that biases the results towards this same eigenvector
localization, but implicitly instead of explicitly. There are
additional connections between the type of densification we
use and many of the ideas in the theory of data manifolds.

Although we have a few ideas about why densifying helps,
this is an exciting area for further exploration. In particu-
lar, spectral diffusions already implicitly densify the graph
through their algorithmic procedures. One question we plan
to study in the future is why we see improved performance
via the explicit densification. This must have a statistical
explanation that parallels our algorithmic procedure.
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